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Abstract. Recent developments in off-lattice self-consistent-field theories for inhomogeneous
complex fluids are reviewed. Particular emphasis is given to the treatment of intermolecular
interactions and compressibility, to the role of fluctuations, and to the discussion of the coarse-
graining length which is inherent to the theory. Valuable insight can be gained from the
comparison of self-consistent-field calculations with Monte Carlo simulations. Finally, some
applications of the theory to orientational properties of polymers and copolymers at interfaces,
and to the phase behaviour of amphiphiles at surfaces, are presented.

1. Introduction

Surfaces and interfaces in supramolecular fluids are a topic of interest in various contexts
of materials science and soft condensed matter physics.

On the one hand, the surface structure of materials determines many surface properties
(adhesive and wetting properties, optical properties etc) and thus plays an important role
for many applications, such as in lubricants, coatings, thin films and membranes [1, 2]. If
the topography and chemistry of surfaces can be controlled, this can be exploited to design
Taylor surfaces for specific purposes [3], e.g., surfaces which anchor liquid crystals in a
well-defined way for liquid-crystal cells [4], intelligent surfaces [5] etc.

On the other hand, interfacial properties often influence the bulk behaviour of materials
in a substantial way, since many commonly used materials are inhomogeneous on a
microscopic scale. An important class of substances for which that is the case are
melts of polymers which contain monomers of different type, e.g., polymer blends or
copolymer melts. This is because different organic molecules are often slightly incompatible
[6]. In homopolymer alloys (e.g., composite matrix materials such as rubber-toughened
plastics), the small relative repulsion of the monomers is amplified by the large number
of monomers in the macromolecules, and completely dominates the entropy of mixing,
which is proportional to the number of molecules. As a result, polymers of different type
are usually immiscible at temperatures of practical interest. They consist microscopically
of numerous finely dispersed droplets of one component in the other, and the interfaces
between these essentially unmixed phases largely govern the material properties [7–9].

One way to prevent the components from demixing is to chemically bind them to
each other, thus forming block copolymers. Even though macroscopic phase separation is
then inhibited, the chains still have a tendency to rearrange themselves so as to allow like
monomers to pack next to each other. Depending on the temperature, block size etc, this
may lead to ‘microphase separation’, i.e., the formation of ordered mesoscopic structures—
of lamellae, ordered micelle arrays, bicontinuous structures [10]—which can be viewed as
ordered arrays of interfaces in a sense. The properties of those materials strongly depend
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on the topology and can be quite unusual [11, 12]. Copolymers are also used as effective
compatibilizers in homopolymer blends. Added in small amounts, they reduce the interfacial
tension between the homopolymer phases [13], and dynamically prevent the coalescence of
droplets [14, 15]. Increasing the copolymer concentration results again in the formation of
mesoscopically structured microphase-separated phases [16, 17].

Other prominent examples for inhomogeneous complex fluids are self-aggregating
amphiphilic systems, e.g., mixtures of oil, water and soap, or lipid–water systems. At high
enough amphiphile concentration, they build ordered structures which are very similar to the
above-mentioned copolymer mesophases [18, 19]. The study of lipids in water is particularly
interesting because of the close connection to biological physics. Indeed, bilayers of lipid
molecules are a major ingredient of biological membranes and thus omnipresent in any
living organism.

Complex fluids are typically made of chemically complicated, large molecules. They
are usually characterized by a variety of competing length scales—in the case of polymer
melts the size of the monomers versus the extension of whole molecules, in the case of
amphiphilic systems also the correlation within and between the self-aggregated structures—
and by the presence of additional, conformation and/or orientational, degrees of freedom. A
full treatment in atomistic detail is in most cases out of reach of today’s supercomputers. On
the other hand, the apparent complexity of the systems actually contributes to a simplification
of the physics on a coarse-grained level. Due to the large number of possible interactions
between molecules, microscopic details average out to a large extent. A few characteristic
attributes of the molecules are often responsible for the main features of a substance. For
example, the properties of polymeric materials are determined mostly by the chain character
and the flexibility of the polymers; amphiphilic systems are characterized by the affinity
of their amphiphiles to both polar and nonpolar environments, and by their orientation at
interfaces. This motivates the study of idealized simplified models, which account only for
the main properties of the molecules and absorb the microscopic details in a few, effective
parameters [20–22, 41, 42]. A second important point is that dense macromolecular systems
are often unusually well described by mean-field approximations. Since large molecules
interact with many others, the effective interaction range in the limit of high molecular
weight is very large, and according to a simple Ginzburg-type argument, the critical region
in which concentration fluctuations become important is very small as a result [23].

Mean-field theories are thus widely used to describe inhomogeneous macromolecular
systems. Many simple and largely successful theories are based on Ginzburg–Landau-type
functionals of the concentration or other extensive quantities (fields), which characterize a
system with respect to the problem of interest [24]. The interactions between molecules are
effectively incorporated into square-gradient terms and sometimes contributions of higher-
order derivatives of the fields [19] The parameters of the model are either derived from a
microscopic theory (as in the de Gennes–Flory–Huggins theory of inhomogeneous polymer
mixtures [21]), or from comparison with experiment. Such a treatment is adequate as long as
the interactions are short ranged, and the inhomogeneities are only weak and characterized
by length scales of the order of the molecular size. It becomes questionable in systems which
are inhomogeneous on smaller length scales—which is true for most examples cited above.
A substantial amount of effort has therefore been put into developing more refined mean-
field theories, which explicitly account for the chain conformational structure (lattice theories
such as the Flory–Huggins theory [25, 20, 26, 27], density functional theories [28–31], self-
consistent-field theories [32–36]), or even for the local structure in polymer melts (e.g., the
lattice cluster theory given by Freed and co-workers [37], or the P-RISM theory given by
Schweizer and Curro [38]). The more microscopic factors a theory incorporates, the more
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detailed is the information that it can provide on local structure properties. Unfortunately,
the treatment also gets more and more involved. Theories with a higher level of coarse
graining have the advantage of being somewhat more transparent and easier to handle.
Moreover, the origins of given physical phenomena can sometimes be tracked down more
easily, if they can be discussed in terms of a highly idealized model. The optimal choice
of a theory of course depends on the specific questions that one wishes to address.

In this paper, we shall discuss one of the most powerful mean-field tools in the study of
macromolecular systems, the self-consistent-field approach. Even though, strictly speaking,
every mean-field approximation involves self-consistent fields, the name self-consistent-
field (SCF) theory is in the polymer community by tradition reserved for a certain type
of approach, which dates back some time to the work of Edwards [39] and Helfand and
Tagami [32]. In a nutshell, it can be characterized as follows. Polymers are described as
random walks in a position-dependent chemical potential, which depends in turn in some
self-consistent way on the distribution of monomers. The basic idea is thus extremely
simple, which explains the enormous appeal that it has had for polymer scientists ever since
it was first formulated. A particularly popular version of the theory has been developed
by Scheutjens and Fleer for lattice models [36] and applied to various problems related
to polymers at interfaces or surfaces [40]. Lattice models allow for an efficient study of
systems with a planar geometry, as long as one is not crucially interested in chain stiffness
and local orientation effects. The treatment of situations which involve strongly curved
interfaces and local or global orientational order is more difficult. One way out of this
dilemma is to employ more sophisticated lattice models. For example, the bond-fluctuation
model of Carmesin and Kremer [43], a popular lattice model in Monte Carlo simulations
[41, 44], has recently been used for self-consistent-field studies of lipid bilayers and polymer
alloy systems [46]. On the other hand, the above-mentioned difficulties are automatically
eliminated if one works in continuous space. We shall restrict our discussion mostly to such
off-lattice models in the following. The basic concepts and recent methodical advances will
be reviewed in the next section. In section 3, some applications will be presented which
illustrate the use of the model for the study of polymer interfaces and amphiphilic systems.
We summarize and conclude in section 4.

2. Theory

2.1. Basic concepts

We consider a mixture ofnj molecules of typej = a, b, c, . . . in a volumeV , which are built
from Nj monomers of speciesα = A,B,C, . . .. Here Roman indices distinguish between
molecule types, and Greek indices denote monomer species. For simplicity, we shall also
assume that the monomers in a molecule build a linear sequence—the generalization to
different architectures is straightforward [45]. The molecules can then be represented by
continuous-space curvesR(s), with s varying between 0 andNj . Polymer typesj differ
from each other in their chain lengthsNj , and in the distributions of monomersα on the
chains. The latter are conveniently described by functionsγα,j (s), which are 1 for portions
of the polymer occupied by theα-monomers, and 0 otherwise. Hence one has∑

α

γα,j (s) = 1

for all j and s. In A homopolymers, for example,γα(s) = δA,α for all s ∈ [0, Nj ], and
in the case of symmetric A:B diblock copolymers,γα(s) = δA,α for s ∈ [0, Nj/2] and
γα(s) = δB,α for s ∈ [Nj/2, 1].
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For a given configuration{Rij (·)}, one can then define a local monomer density operator

ρ̂α(r) =
∑
j

nj ρ̂
j
α(r) (1)

with

ρ̂jα(r) =
1

nj

nj∑
ij=1

∫ Nj

0
ds δ(r −Rij (s))γα,j (s).

The interaction between monomers can be described by a coarse-grained monomer free-
energy functionalV{ρ̂α}. In addition to the Boltzmann factor associated with this interaction
energy, chain conformations are distributed according to an intrinsic statistical weight
Pj {R(·)}, which accounts for the internal energy of the chain, and for the part of the
configurational entropy which stems from length scales smaller than the coarse-graining
length. In practice, polymers are most commonly modelled as Gaussian chains [47]:

Pj {R(·)} = N exp

[
−
∑
α

3

2b2
α

∫ Nj

0
ds

∣∣∣∣dR(s)ds

∣∣∣∣2γα,j (s)] (2)

with the statistical segment length ofα-monomersbα, and the normalization factorN chosen
such that ∫

D{R(·)} Pj {R(·)} = V.

Here and in the following, all lengths are given in units of some microscopic lengthV
1/3

0 and
are hence dimensionless. The conformational free energy of the chains is thus approximated
by a Gaussian stretching energy with spring constant 3/2b2

α. Shorter or stiffer polymers are
sometimes represented as ‘wormlike’ chains of fixed contour length. Chain portions made
up of α-monomers are then characterized by the monomer lengthaα and the dimensionless
stiffnessηα, and the probability distribution functionalsPj are given by [48]

Pj {R(·)} = N
∏
s

δ(U2− 1) exp

[
−
∑
α

ηα

2

∫ Nj

0
ds

∣∣∣∣dU (s)ds

∣∣∣∣2γα,j (s)] (3)

whereU = (dR/ds)/aα is a dimensional tangent vector constrained to have magnitude unity
by the delta function. This choice of a statistical weight has the advantage that monomer
orientations are well defined, and orientation-dependent interactions between monomers can
be introduced in a straightforward way. In the limit of smallη, i.e., very flexible chains,
the wormlike or semiflexible chain statistics reduces to Gaussian chain statistics [49]. Of
course, it is also possible to consider chains with mixed Gaussian and wormlike parts.

Alternatively, many polymer models describe molecules in terms of discrete walks{Rs}
instead of continuous curves{R(s)}. The treatment is essentially the same, save that the
integrals

∫ Nj
0 ds are replaced by sums

∑
s . In the case of freely jointed chains with fixed

bond lengthl, for example, the statistical weight is

Pj {R(·)} = N
Nj−1∏
s=1

δ
(|Rs+1−Rs | − l

)
. (4)

The introduction of bending potentials acting on the angle between subsequent bonds,
monomer-dependent bond lengthslαβ (for bonds connecting monomersα andβ), or variable
bond lengths with bond-length potentials, etc, is straightforward.

In all of the examples quoted so far, the chain statistics is determined by local relations
between neighbour monomers along the chain, and is thus that of random walks. As we shall



Self-consistent-field theories for complex fluids 8109

see in section 2.2, solving such a model in the self-consistent-field approximation amounts
to solving a diffusion equation self-consistently, which can usually be done at relatively
moderate expense. This makes this kind of approach particularly attractive. However, the
self-consistent-field method is not restricted to locally defined weight functions. Szleifer and
co-workers [50, 51] have recently devised a procedure which allows one to perform self-
consistent-field calculations for chains with arbitrary chain statistics, e.g., self-avoiding-walk
statistics etc (see section 2.2).

In the following, we shall use the notation∫
D̂j {R(·)} =

∫
D{R(·)} Pj {R(·)}

for the weighted sum over all chain conformations, which is a path integral in the case of
continuous curves, and a summation over discrete walks otherwise. The partition function
of the system in the canonical ensemble is then given by

ZC =
∏
j

{
1

nj !

nj∏
ij=1

∫
D̂j {Rij (·)}

}
exp[−βV{ρ̂α}] (5)

whereβ = 1/kBT is the Boltzmann factor, and the monomer interaction functionalV{ρ̂α}
has been introduced earlier. In order to proceed, it is useful [34] to insert functional integrals
over delta functions

1=
∫
D{ρα} δ(ρα − ρ̂α) =

∫
D{ρα}

∫
i∞
D{ωα} exp

(∫
dr ωα(r)(ρα(r)− ρ̂α(r))

)
(6)

which allow one to replace the density operatorsρ̂α(r) in V{ρ̂α} by density functionsρα(r).
The subscript

∫
i∞ indicates that the limits of integration of the auxiliary fieldsωα(r) are

−i∞ and i∞. Equation (5) can then be rewritten exactly as

ZC =
{∏

α

∫
D{ρα}

∫
i∞
D{ωα}

}
exp[−βFC{ρα, ωα}] (7)

with the canonical free-energy functional

βFC{ρα, ωα} = βV{ρα} −
∑
α

∫
dr ωα(r)ρα(r)−

∑
j

nj ln(Qj {ωα}/nj ). (8)

The functionalQj {ωα} is the partition function of a single chain moving in the (imaginary)
external fieldsωα(r):

Qj {ωα} =
∫
D̂j {R(·)} exp

[
−
∑
α

∫ Nj

0
ds ωα(R(s))γα,j (s)

]
. (9)

The main step of the self-consistent-field approach consists in performing a saddle-point
integration of the integral (7) with respect toωα(r): the path integral is replaced by the
value of the integrand at the corresponding saddle functionωα(r) in the complex plane.
Extremization of the exponent in (7) yields the equations

ρα(r) = −
∑
j

nj
δ ln(Qj {ωα})
δωα(r)

= 〈ρ̂α(r)〉C. (10)

The brackets〈· · ·〉C denote statistical averages taken in a canonical ensemble ofnj non-
interacting chains of typej subject to the external fieldsωα(r). Note that the saddle
functionsωα(r) which solve these equations are now real. The approximation thus amounts
to replacing the exact constraintρα(r) = ρ̂α(r) in equation (6) by the more relaxed
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requirementρα(r) = 〈ρ̂α(r)〉C . The functionsωα(r) act as Lagrange parameters which
enforce this condition. The resulting partition function is

ZC =
{∏

α

∫
D{ρα}

}
exp[−βFC{ρα, ωα{ρα}}] (11)

where the fieldsωα{ρα} depend self-consistently onρα according to equation (10).
When looking at mixtures, it is sometimes more convenient to work in the grand

canonical ensemble [35, 52]. The starting point is then the grand canonical partition function

ZGC =
∏
j

∞∑
nj=0

{
eβµjnj

nj !

nj∏
ij=1

∫
D̂j {Rij (·)}

}
exp[−βV{ρ̂α}] (12)

where theµj are the chemical potentials associated with molecules of typej . One can now
proceed in the same way as above, and obtain the analogue to (7) with the grand canonical
free-energy functional:

βFGC{ρα, ωα} = βV{ρα} −
∑
α

∫
dr ωα(r)ρα(r)−

∑
j

eβµjQj {ωα}. (13)

The extremization with respect toωα(r) yields the condition

ρα(r) = −
∑
j

eβµj
δQj
δωα(r)

= 〈ρ̂α(r)〉GC. (14)

Hence the grand canonical partition function in the self-consistent-field approximation reads

ZGC =
{∏

α

∫
D{ρα}

}
exp[−βFGC{ρα, ωα{ρα}}] (15)

with ωα{ρα} defined via equation (14).
At this point, concentration fluctuations are still included in the partition function.

Usually, self-consistent-field approximations take one more step and perform a second
saddle-point integration of (11) or (15) with respect toρα(r). The free energy is then
approximated by

F = −kBT lnZ ≈ FSCF = min
ρα(r)
F{ρα, ωα{ρα}} (16)

with the minimization equations

ωα(r) = δβV
δρα(r)

(17)

in both the canonical and the grand canonical ensemble. This is a very intuitive, typical
mean-field result: the auxiliary fieldsωα(r) which drive the monomer densitiesρα(r) are
identified with the local excess free energy needed to add one monomerα to the melt at the
positionr, less the contribution of the translational entropy of polymers. Since the fieldsωα
are functions ofρα by means of equation (10) or (14), equation (17) effectively determines
the mean-field concentration profilesρSCFα (r).

Hence two approximations enter the self-consistent-field theory: the first leading to
equation (11) or equation (15), respectively, and the second leading to equation (16). We
have taken care to separate these two steps for the following reasons. First, Shi, Noolandi
and Desai [53] have recently suggested a way to systematically improve on the second
step and take Gaussian or even higher-order concentration fluctuations into account (see
section 2.4). This allows for a stability analysis of the mean-field solution [54], and for the
construction of kinetic paths connecting different mean-field solutions [55]. Second, the two
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steps differ qualitatively from each other. Technically, the saddle functional approximates
integrals ofωα on the imaginary axis, and real integrals ofρα. A stable saddle point is thus a
minimumwith respect toρα and amaximumwith respect toωα. The first step motivates the
introduction of a coarse-grained density functionalF{ρα, ωα{ρα}}, which is then minimized
in step two as in usual mean-field approaches.

The introduction of orientation-dependent monomer interactions into the formalism is
straightforward. The monomer density operator (1) is simply replaced by

ρ̂jα(r,u) =
1

nj

nj∑
ij=1

∫ Nj

0
ds δ(r −Rij (s))δ(u−Uij (s))γα,j (s) (18)

whereU is the orientation of monomerij . The fieldsωα become orientation dependent and
meet (cf. (17))ωα(r,u) = δβV/δρα(r,u).

Finally in this section, we sketch Helfand’s original formulation of the self-consistent-
field theory [33], which is particularly suited for the study of polymer interfaces and surfaces.
Consider an interface between two entirely segregated homopolymer phasesj = A and B,
which each occupy a partial volumeVj = njNj/ρ∗j . The two pure systems are characterized
by their bulk densitiesρ∗j and the associated fieldsω∗j = dν∗j /dρ

∗
j , whereν∗j is the bulk

density of the interaction energyV. Let further the probability distributionPj {R(·)} be
normalized such that

∫
D̂j {R(·)} = Vj . The free-energy density of the pure systems is then

given by

βf ∗j = βν∗j + ρ∗j /Nj ln(ρ∗j /Nj ).

When looking at the interface between the two phases, it is now convenient to work
with shifted monomer fields:

ω̃j (r) = ωj(r)− ω∗j (19)

which vanish in the pure systemj . They can be interpreted as the excess work needed to
bring a monomer of typej from the pure system into the interfacial region. The underlying
shifted interaction potential (ω̃j (r) = δṼ/δρj (r)) has the form

βṼ = βV −
∑
j

ω∗j

∫
dr ρj (r)− constant (20)

where

‘constant’=
∑
j

Vj {βν∗j − ω∗j ρ∗j }

subtracts the bulk contribution of the pure phases. The shifted fieldsω̃j define a renormalized
single-chain partition function:

Q̃j =
∫
D̂j {R(·)} exp

[
−
∫ Nj

0
ds ω̃j (R(s))

]
= Qj exp[−ω∗j Nj ]. (21)

Note that the actual value of̃Qj is Q̃j = njNj/ρ
∗
j . Hence the equation for the density

profiles can be written in the simple form

ρj (r) = −
ρ∗j
Nj

δQ̃j
δω̃j (r)

(22)

and the excess free energy of the interface is

βFexc = βṼ{ρj } −
∑
j

∫
dr ω̃j (r)ρj (r). (23)
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The formalism can also be applied if the polymers A and B are not fully segregated, i.e.,
the bulk phases contain both A and B. In that case, the interfacial free energy (23) has to
be corrected for additional bulk contributions. Helfandet al have approximated the excess
interaction potential̃V by the simple form [32, 33]

βṼ =
∫

dr

{
χ
ρAρB√
ρ∗Aρ

∗
B

+ 1

2κkBT

(
ρA

ρ∗A
+ ρB

ρ∗B
− 1

)2}
(24)

where the Flory–Huggins parameterχ describes the incompatibility of monomers A and
B, and κ is the compressibility of the melt. In the limit of infinitely long polymers and
zero compressibility, Helfand and Tagami were able to solve the theory analytically (SSL:
strong-segregation limit [32]). For a symmetric mixture (bA = bB = b, ρ∗A = ρ∗B = ρ), they
obtained the interfacial tensionβσSSL =

√
χ/6ρb and the interfacial widthwSSL = b/

√
6χ .

2.2. Implementation

Equations (10) or (14) and (17) define a complete cycle of self-consistent equations, which
can be solved numerically by suitable iteration methods. The main task in each iteration
step consists in evaluating the partition functionQj {ωα} of a single chainj in the external
fieldsωα(r) (9) and the derivatives ofQj {ωα}. If the polymers have random-walk statistics
Pj {R(·)} as in (2), (3) or (4), it is useful to define the propagators

Gj(r, t; r′, t ′) =
∫
D̂j {R(·)} exp

[
−
∑
α

∫ t ′

t

ds ωα(R(s))γα,j (s)

]
× δ(r −R(t))δ(r′ −R(t ′)) (25)

or, in the case where monomer orientations are important,

Gj(r,u, t; r′,u′, t ′) =
∫
D̂j {R(·)} exp

[
−
∑
α

∫ t ′

t

ds ωα(R(s))γα,j (s)

]
× δ(r −R(t))δ(r′ −R(t ′))δ(u−U (t))δ(u′ −U (t ′)). (26)

Since they carry no memory along the chain, these propagators satisfy modified diffusion
equations with the initial condition

Gj(r, t; r′, t) = δ(r − r′)
or

Gj(r,u, t; r′,u′, t ′) = δ(r − r′)δ(u− u′).
Specifically, the diffusion equation for Gaussian chains (2) reads [32][

∂

∂t ′
+
∑
α

γα,j (t
′)
[
− b

2
α

6
∇2
r′ + ωα(r′)

]]
Gj(r, t; r′, t ′) = 0. (27)

For wormlike chains (3) [49],[
∂

∂t ′
+
∑
α

γα,j (t
′)
[
aαu

′∇r′ − 1

2ηα
∇2
u′ + ωα(r′)

]]
Gj(r,u, t; r′,u′, t ′) = 0 (28)

and for freely jointed chains with bond lengthl (4),

Gj(r, t; r′, t ′ + 1) = exp[−ωα(r′)] 1

4π

∫
du Gj(r, t; r′ − lu, t ′) (29)
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where|u| = 1 as before, and
∫

du denotes integration over the full solid angle. Once the
propagators have been determined, one easily calculates the partition function

Qj =
∫

dr dr′ Gj(r, 0; r′, Nj )
and its derivatives
δQj

δωα(r0)
=
∫

dr dr′
∫ Nj

0
ds γα,j (s)Gj (r, 0; r0, s)Gj (r0, s; r′, Nj ) (30a)

δ2Qj
δωα(r0) δωβ(r1)

= 2
∫

dr dr′
∫ Nj

0
ds γα,j (s)

∫ s

0
ds ′ γβ,j (s ′)

× Gj(r, 0; r0, s
′)Gj (r0, s

′; r1, s)Gj (r1, s; r′, Nj ) (30b)

etc. In fact, only the first derivatives enter the self-consistent-field equations. It is thus
often less time consuming to calculate directly the ‘end-segment distributions’

qj (r, t) =
∫

dr′ Gj(r′, 0; r, t) q̄j (r, t) =
∫

dr′ Gj(r, t; r′, Nj )
which solve the same diffusion equation asG with boundary conditionsqj (r, 0) = 1 and
q̄j (r, Nj ) = 1. The end-segment distribution functions can be used to calculate density
profiles, chain-end distributions etc. The full propagatorsGj(r, t; r′, t ′) are needed when
looking at the effect of fluctuations (see section 2.4), or at chain correlation functions such
as distributions of end-to-end vectors.

Diffusion equations can usually be solved without too much computational effort. The
computer time needed for one iteration step only scales linearly with the chain lengthN , and
hence one can handle relatively long chains. Physically, treating the chains as random walks
is well justified in dense melts of long polymers, since the excluded-volume interactions
between monomers of the same chain are screened by the presence of other chains [21].

However, this is not true for dilute polymer chains, and on length scales smaller than the
screening length [21]. The random-walk approximation thus becomes questionable when
looking at polymers in good-solvent conditions, or at relatively short macromolecules. In
that case, it is more appropriate to choose a weight distributionPj which accounts also
for long-range correlations within a chain. One then has to consider whole chains in the
external field of the other chains (the single-chain mean field).

Szleifer and co-workers have recently suggested an enumeration procedure for the
evaluation of chain partition functions [50, 51]. They approximate the path integral∫
D̂j {R(·)} by the sum over a representative sample of chain configurationsRij (·), which

are distributed according to the weight functionPj {R(·)}. The sample can be generated
by Monte Carlo simulations, taken from experiments etc. This approach is conceptually
extremely simple and can be applied to arbitrary weight distributionsPj {R(·)}. For example,
dilute polymers in good solvent are well described by self-avoiding walks, and one can
generate the sample from single-chain simulations [50]. Semidilute polymers have self-
avoiding-walk statistics on short length scales below the screening length, and random-walk
statistics on larger length scales. The best description on all length scales is obtained when
the sample is generated in Monte Carlo simulations of a melt [46]. Unfortunately, the
computational effort required to reliably solve the self-consistent equations grows rapidly
with the chain length, since the sizes of the sample have to be made very large. In a dense
melt of long polymers, random-walk models for chains usually give reasonably good results
at much less expense.

Nevertheless, the method is very versatile and has much potential for further refinement.
For example, reweighting schemes can be devised in analogy to the reweighting techniques
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in Monte Carlo simulations [56], which are useful if the actual distribution of chain
conformations differs substantially from the distributionPj {R(·)}. One then draws the
sample of chain conformations according to a modified distributionP ′j {R(·)}, and corrects
for this in the sum over conformations:∫

D̂j {R(·)} · · · −→
∑
Rij

(Pj {Rij (·)}/P ′j {Rij (·)}) · · ·

Weinhold et al have introduced a coupling betweenPj and the number of interchain
contacts, and could qualitatively reproduce the shrinking of chains in an athermal melt
with increasing monomer density [57]. Within a similar approach, Müller calculates the
statistical mechanics of clusters of polymers embedded in a self-consistent field, in order to
study the conformations of a single A chain in an unfavourable B environment [58]. His
results compare well with Monte Carlo simulations.

With these remarks, we end the discussion of the Szleifer method. The reader is referred
to [51] for a detailed review of the approach and its applications. We close this section with
a few technical comments on the solution of the mean-field equations.

The careful choice of a suitable basis is crucial for the success of a self-consistent-field
calculation. Matsenet al have implemented with great success a method for studying
periodically ordered mesophases, where spatially dependent functions are expanded in
orthonormal basis functions with the symmetry of the phase being taken into consideration
[59–61]. If monomer interactions come into play, it is usually beneficial to expand functions
of the orientationu in spherical harmonics [62].

The mean-field equations are solved iteratively, e.g., using the fieldsωα(r) as iteration
variables. The most popular iteration procedure is the Newton–Raphson method [63]. One
usually obtains a solution of reasonably high accuracy within fewer than ten iteration steps.
However, each step involves the determination of a full Hesse matrix of derivatives, i.e.,
the number of function evaluations grows quadratically with the number of degrees of
freedom. Relaxation procedures take more iteration steps, but may nevertheless require
fewer function evaluations in the end. The present author has had good experience with a
variant of a method originally suggested by Ng [64, 65]. Another efficient procedure is the
multidimensional secant method of Broyden [66, 67].

2.3. Monomer interactions and compressibility

We now turn to the discussion of the functionalV{ρα}, which defines together withPj {R(·)}
the actual model. It describes the free energy of a system of interacting monomers without
translational entropy. Naively, one could be tempted to identify it with the sum of direct
interactionsWαβ(r) between monomers,

1

2

∫
dr dr′

∑
αβ

Wαβ(r − r′)ρα(r)ρβ(r′).

However, this approximation is poor for dense fluids, where indirect interactions and
multiplet correlations are important. In most applications of the self-consistent-field theory,
the quantities of interest are composition inhomogeneities, whereas the total density varies
comparatively little throughout the system. Furthermore, the relative repulsion of monomers
of different types is usually vanishingly small compared to the total free energy in the melt. It
is thus propitious to separateV into an ‘equation-of-state’ contributionV0, which accounts
for density fluctuations and compressibility effects, and an interaction partVinter, which
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incorporates the incompatibility of unlike monomers:

V{ρα} = V0{ρα} + Vinter{ρα}. (31)

We shall discuss the two parts in turn, and begin withV0. If the melt is nearly
incompressible and the density fluctuations are small, one may use Helfand’s quadratic
approximation [32, 33] (see equation (24))

V0{ρα} = 1

2κ

∫
dr

(
1−

∑
α

ραvα

)2

(32)

wherevα is the specific volume of anα-monomer.
More rigorously, total incompressibility is often postulated:∑

α

ρα(r)vα ≡ 1 everywhere. (33)

This is most commonly achieved by introducing an additional Lagrange parameter field
ξ(r), which couples to the incompressibility constraint (33) [34, 35, 59]. The free-energy
functional (8) or (13) is then replaced by

βF = βVinter{ρα} −
∑
α

∫
dr ωα(r)ρα(r)−

∫
dr ξ(r)

[∑
α

ρα(r)vα − 1

]

−


∑
j

nj ln(Qj {ωα}/nj ) (canonical ensemble)∑
j

eβµjQj {ωα} (grand canonical ensemble)
(34)

and the minimization equation (17) turns into

ωα(r) = δβVinter

δρα(r)
− ξ(r)vα. (35)

The incompressibility constraint (33) determines the fieldξ(r) unambiguously, except for
a constantξ0. It is often chosen such that

∫
dr ξ(r) = 0. Note that the choice ofξ0

determines the offset of the chemical potentialsµj in the grand canonical ensemble.
Within this framework of an incompressible theory, total-density fluctuations are often

reintroduced by means of a hypothetical noninteracting ‘solvent’s, which fills the space
between the molecules [34, 51, 68, 69]. The incompressibility condition (33) then reads∑

α

ρα(r)vα + ρs(r)vs ≡ 1

and the excess potential of the solvent is simply given byωs(r) = ξ(r)vs . According to
equation (10) or (14), the density of the solvent is thus given by

ρs(r) = z exp[−ξ(r)vs ]
with

z = ns
/∫

dr exp[−ξ(r)vs ]
in the canonical case and

z = exp[βµs ]

in the grand canonical case. This definesξ(r) as a function of the monomer densitiesρα(r).
Choosingξ0 such that ln(zvs) = 0, one obtains the fields

ωα(r) = δβVinter

δρα(r)
− vα
vs

ln

(
1−

∑
α

ρα(r)vα

)
. (36)
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The approach amounts to using an equation-of-state potential of the form

βV0{ρα} = 1

vs

∫
dr (1− η(r)) ln(1− η(r))+ 1

vs

∫
dr η(r) (37)

where the packing fractionη(r) = ∑
α ρα(r)vα is the local volume fraction occupied by

monomers. The last term ensures that the free energy per monomer vanishes in the limit
η → 0. Equation (37) is a local version of the familiar compressible Flory–Huggins or
Sanchez–Lacombe theory [70]. It provides an intuitive and straightforward treatment of
compressibility effects in polymer blends. Unfortunately, the prediction for the equation of
state of the melt can be rather poor [71], due to the total neglect of details of the monomer
structure and local monomer correlations.

An alternative approach suggested in reference [72] conceivesV0 as the density func-
tional of a suitable reference system of identical monomers with no translational entropy.
In the local density approximation,V0 can be derived from the equation of state5(ρ) (5
is the pressure):

βV0 =
∫

dr ρ(r)f [ρ(r)] with f (ρ) =
∫ ρ

0
dx

5(x)

x2
. (38)

The functionf (ρ) is the local free energy per monomer. When studying interfaces or
surfaces,V0 is conveniently replaced according to (20) by

βṼ0 =
∫

dr
[
ρ(r)(f [ρ(r)] − ω∗)− constant

]
(39)

whereω∗ = f (ρ∗) + ρ∗(df/dρ)ρ∗ is the excess free energy per monomer at the bulk
densityρ∗, and constant= ρ∗2(df/dρ)ρ∗ . The theory requires as input the knowledge of
the equation of state of the reference system, i.e., a melt of infinitely long polymers built
from the reference monomers. For example, one can take the Flory–Huggins form [25]

5(ρ)/ρ = −1− 1/η ln(1− η) (40)

with the packing fractionη = ρ/ρ∗, and recover the potential (37) withvs = 1/ρ∗. On the
basis of the Carnahan–Starling equation of state for single hard spheres, Dickman and Hall
have derived an equation of state for hard chains [73], which compares well with computer
simulations of hard chains, and even of the bond-fluctuation model [71]:

5(ρ)/ρ = C0

[
1+ η + η2− η3

(1− η)3 − 1

]
(41)

and leads to the free energy

f (ρ) = C0η(4− 3η)/(1− η)2. (42)

The constantC0 depends on details of the intramolecular chain structure, andη = a3ρπ/6
is the actual volume occupied by monomers of diametera. Other forms for the equation of
state are available as well [74]. In some cases, one may wish to include more information
on the local liquid structure in the functionalV0, and in the corresponding monomer excess
free energyω(r). Nath et al [75] suggest a modified version of the self-consistent-field
theory, where the excess free energy is given by (cf. (19))

ω̃(r) = −
∫

dr′ c(r − r′)[ρ(r)− ρ∗] + ω∗ (43)

with the direct correlation functionsc(r) taken from P-RISM theory [38].
Next we discuss the second contributionVinter to the free-energy functionalV{ρα}, which

describes the monomer-specific part of the interactions. Since it is small compared to the
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total free energy of the system, we may assume a perturbative treatment. We split the pair
interactionsWαβ(r) between monomersα andβ into two parts:

Wαβ(r) = W0(r)+W ′αβ(r).
The potentialW0(r) describes the interactions in the reference systemV0. Then we define

βUαβ(r) = 1− exp[−βW ′αβ(r)]. (44)

If W ′αβ(r) is integrable and small,Uαβ(r) reduces toW ′αβ(r). More generally, the
expression (44) also allows us to deal with effects of nonadditive packing, size disparities of
monomers and the like (see also reference [44]). In perturbation theory [76], the free-energy
contributionVinter is given by

Vinter{ρα} = 1

2

∫
dr dr′

∑
αβ

Uαβ(r − r′)ρ(2)αβ (r, r′). (45)

Here ρ(2)αβ is the pair density of type-α monomers atr and type-β monomers atr′,
which arenot direct neighbours along one polymer chain. (The interactions between the
latter contribute to the conformational weight functionalPj {R(·)}.) Furthermore, the pair
distribution function is approximated by

ρ
(2)
αβ (r, r

′) = ρα(r)ρβ(r′)γ (r − r′) (46)

i.e., the monomer pair correlation functionγ (r) is taken to be independent of the identity
of the interacting monomers, and of their densities [77].

If the interactions are short range, the profilesρβ(r′) can be expanded aroundr [33].
With the definitions

χαβ = βρ∗
∫

dr Uαβ(r)γ (r) (47)

σ
ij

αβ = βρ∗
∫

dr Uαβ(r)γ (r)rirj (48)

etc, one obtains

βVinter{ρα} = 1

2ρ∗

∫
dr

∑
αβ

[
ρα(r)ρβ(r)χαβ − 1

2

∑
ij

dρα
dri

dρα
drj

σ
ij

αβ + · · ·
]
. (49)

The indicesi run over cartesian coordinatesx, y, z, and the bulk densityρ∗ was introduced
in order to makeχαβ dimensionless. The resulting excess potentials are given by

ωα(r) = δβV0

δρ
+ 1

ρ∗
∑
β

[
χαβρβ(r)+ 1

2

∑
ij

σ
ij

αβ

d2ρβ

dri drj
+ · · ·

]
. (50)

In systems with only two types of monomer A and B, the parametersχαβ are usually
combined to one single ‘Flory–Huggins parameter’

χ = χAB − 1

2
(χAA + χBB). (51)

Similarly, we defineσ ij = σ ijAB − 1
2(σ

ij

AA + σ ijBB). The fieldsωA,B can then be rewritten as

ωA(r) = δβV0

δρ
+ 1

ρ∗
χρB + 1

2ρ∗
∑
ij

σ ij
d2ρB

dri drj
+ h{ρ(r)}

ωB(r) = δβV0

δρ
+ 1

ρ∗
χρA + 1

2ρ∗
∑
ij

σ ij
d2ρA

dri drj
− h{ρ(r)}

(52)
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where

h{ρ(r)} = 1

4
(χAA − χBB)ρ + 1

8

∑
ij

(σ
ij

AA − σ ijBB)
d2ρ

dri drj
(53)

depends only on the total-density profileρ(r) = ρA + ρB, and contributions which are
identical for both components have been dropped except for the leading termδβV0/δρ.
Similarly, the free-energy functionalVinter reads

βVinter = 1

ρ∗

∫
dr

[
χρAρB − 1

2

∑
ij

σ ij
dρA

dri

dρB

drj
+ h{ρ}(ρA − ρB)+ v{ρ}

]
. (54)

Here again,v{ρ} can be neglected compared toβV0.
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Figure 1. Surface segregation profiles of the minority component at coexistence below the
demixing transition (χc) in a symmetric polymer mixture. The dashed line shows the volume
fraction profile forσ = 0, where the range of monomer interactions is assumed to be zero. The
inset shows the total-density profile. From reference [72].

Usually, only the ‘local’ contributions (∝χαβ) are taken into account. However, the
higher-order nonlocal terms become important in situations where the local density profiles
vary strongly. We shall illustrate this using the example of surface segregation in a
completely symmetric binary (A, B) blend of two incompatible, but otherwise identical
homopolymers. Even if the surface is chosen neutral, i.e., the surface tensions of A and B
are equal, the minority component segregates to the surface, because it has less unfavourable
contacts with polymers of the majority component there. This effect is often called a
‘missing-neighbour effect’. It increases with the range of the interactions, i.e., it should
increase with the value ofσ .

In reference [72], self-consistent-field calculations are presented for such a system. The
parameters of the theory were adjusted to the bond-fluctuation model, a lattice model for
polymers which has been widely used in Monte Carlo simulations and has extremely well-
known bulk properties. It will be introduced in some more detail in section 3.2. The chain
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conformations in the bulk [78], the equation of state [71, 79] and the thermodynamics of
mixing [80] have been investigated in detail. Therefore, the model parameters for the self-
consistent theory, e.g., within the Gaussian chain model, are all known. Figure 1 shows
two segregation profiles at bulk two-phase coexistence, one withσ = 0 (dashed line) and
one with σ adapted to the bond-fluctuation model (solid line). (Note that the fieldh{ρ},
equation (53), which couples directly to the composition fluctuations, vanishes in a perfectly
symmetric mixture.) In the limit ofσ = 0 or pure contact interactions, surface segregation is
almost entirely suppressed. Using the adjusted value ofσ , one finds that the volume fraction
8A = ρA/ρ of the minority phase increases by almost a factor of two at the surface.

The self-consistent-field results can be compared with the Monte Carlo simulations of
Rouaultet al [81]. Figure 2 shows the predicted difference between the volume fractions of
A at the surface and in the bulk18A, and corresponding Monte Carlo data. The simulations
were performed in a slab geometry with a slab thickness of about three times the gyration
radius of the chains. In such a thin film, the composition variable|ρA − ρB| at coexistence
is reduced compared to that of the bulk system. The difference between the volume fraction
8A at the surface of the thin film and in the bulk of the infinite system thus gives an upper
bound for the actual value of18A. The difference between8A at the surface and in the
centre of the thin film gives a lower bound. Figure 2 illustrates that the theoretical prediction
lies nicely within these two bounds. We emphasize that the good agreement was reached
without using any adjustable parameters. However, the range of the monomer interactions
has to be accounted for correctly, i.e., the nonlocal termσ may not be neglected in this
situation with strong density variations.

0.00 0.10 0.20 0.30 0.40 0.50
1/χN

0.00

0.05
∆ΦA

ΦA,b-ΦA,1 (SCFT)
ΦA,c-ΦA,1 (MC data)
ΦA,b-ΦA,1 (MC data)

Figure 2. The difference18A between the volume fraction of the minority component at the
surface and in the bulk, at two-phase coexistence, versus 1/χN (N = 32). Data points show the
simulation results of Rouaultet al (reference [81]): the upper bound for18A (circles), and the
lower bound (squares). The arrow indicates the value of 1/χN which corresponds to figure 1.
From reference [72].

A second caveat applies to the approximation (46). In general, the pair correlation
function depends on the identity of the monomers, and on the local environment. For
example, the number of monomer contacts divided by the local density typically decreases
in the vicinity of an interface [82], and is different for homopolymers and copolymers [83].
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This is a higher-order effect in our perturbative approach, which is usually not taken into
account in self-consistent-field theories. Maureret al have recently found experimental
evidence that it may engender a difference of the effectiveχ -parameter in homopolymer
and block-copolymer blends [84].

2.4. Fluctuations

In the limit of infinite chain length (while keeping the densities constant), the saddle-
point integrations leading to the free-energy expression (16) become exact. At any finite
chain length, however, the free energy is affected by concentration fluctuations. On the
one hand, the concentrations always fluctuate locally about their local mean value. The
length scale for these fluctuations is given by the bulk correlation length, which is usually
roughly the gyration radius and diverges only very close to a critical point. In systems with
interfaces, a second qualitatively different type of fluctuation emerges: since the interface
breaks a continuous symmetry—the translational symmetry—long-wavelength Goldstone
excitations come into existence which cost virtually no energy in the zero-wavelength limit.
The corresponding length scale thus diverges at all temperatures. These fluctuations are
sometimes referred to as interface ‘waviness’, or capillary-wave fluctuations.

Local concentration fluctuations can be assessed systematically using an expansion of
local concentration perturbations:

δρα(r) = ρα(r)− ρSCFα (r)

about the SCF concentration profilesρSCFα (r). A way to perform such a perturbative
extension of the self-consistent-field theory has recently been suggested for incompressible
mixtures in the canonical ensemble by Shi, Noolandi and Desai [53]. In the following,
we shall briefly sketch their approach, and generalize it for the case of compressible
mixtures and arbitrary statistical ensemble. Capillary-wave fluctuations will be discussed
subsequently.

The starting point is the partition function (11) or (15). In the perturbative treatment, the
free-energy functionalF{ρα, ωα{ρα}} is expanded about its self-consistent-field minimum
FSCF . Following Shi et al, this is done most conveniently by expandingFC{ρα, ωα} in
bothδρα and the field deviationsδωα = ωα{ρα}−ωα{ρSCFα }, keeping in mind that the latter
are functions of the concentration perturbationsδρα. It is useful to define the single-chain
k-point distribution function

gjα1···αk (r1 · · · rk) = 1

Qj
δkQj

δωα1(r1) · · · δωαk (rk)
(55)

which is the jointk-point density〈ρ̂jα1(r1) · · · ρ̂jαk (rk)〉 for monomers of the same chain of
type j . The corresponding cumulant correlation functions are given by

cjα1···αk (r1 · · · rk) = δk lnQj
δωα1(r1) · · · δωαk (rk)

. (56)

For example, the lowest cumulant correlation function is simply the density,c
j
α(r) =

g
j
α(r) = 〈ρ̂jα〉, the pair correlation function is

c
j

αβ(r, r
′) = 〈ρ̂jα(r)ρ̂jβ(r′)〉 − 〈ρ̂jα(r)〉〈ρ̂jβ(r′)〉

etc. Note that these are single-chain correlation functions of noninteracting chainsj subject
to the external fieldsωα(r). For convenience, we also introduce the notation

V (k)α1···αk (r1 · · · rk) = δkV
δρα1(r1) · · · δραk (rk)

∣∣∣∣
{ρSCFα }

(57)
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and define the functionsKα1···αk (r1 · · · rk):
Kα1···αk (r1 · · · rk)

=


∑
j

nj c
j
α1···αk (r1 · · · rk) (canonical ensemble)∑

j

exp(βµj )Qj gjα1···αk (r1 · · · rk) (grand canonical ensemble).

(58)

With these definitions, and using equations (10), (14), and (17), the free-energy func-
tional (8) or (13) can be expanded as

βF{ρα, ωα} = βFSCF −
∑
α

∫
dr δρα(r) δωβ(r

′)

+
∞∑
k=2

1

k!

∑
α1···αk

∫
dr1 · · · drk

{
βV (k)α1···αk (r1 · · · rk) δρα1(r1) · · · δραk (rk)

− Kα1···αk (r1 · · · rk) δωα1(r1) · · · δωαk (rk)
}
. (59)

The field deviationsδωα are functions of the concentration perturbations by means of the
relation (10) in the canonical ensemble, or the relation (14) in the grand canonical ensemble.
In terms of the correlation functionsK introduced above, these can be rewritten as

δρα(r) = −
∞∑
k=2

1

(k − 1)!

∑
α2···αk

∫
dr2 · · · drk Kαα2···αk (rr2 · · · rk) δωα2(r2) · · · δωαk (rk).

(60)

To leading order inδρα, one gets

δωα(r) = −
∑
β

∫
dr′ K−1

αβ (r, r
′) δρβ(r′), (61)

whereK−1
αβ is the inverse ofKαβ , defined through the relation∑

γ

∫
dr′′ K−1

αγ (r, r
′′)Kγβ(r′′, r′) = δαβ δ(r − r′).

Inserting this into equation (59) yields the Gaussian contribution of the fluctuations to the
free-energy functional:

βF = βFSCF + 1

2

∑
αβ

∫
dr dr′ {βV (2)αβ (r, r′)+K−1

αβ (r, r
′)} δρα(r) δρβ(r′)+ · · · . (62)

The study of these harmonic fluctuations already permits a stability analysis of the self-
consistent-field solutionFSCF , and the calculation of scattering functions. The partition
function in leading harmonic order contains only Gaussian integrals and can be evaluated
in a straightforward way. At first sight, inverting the functionKαβ(r, r′) seems a difficult
task. However, a considerable simplification can often be achieved by an appropriate
basis transformation, i.e., expressingKαβ , ρα etc in terms of suitable basis functions—for
example, in periodically ordered structures an expansion in the Bloch waves belonging to
the periodically ordered potentialωα(r) has proved useful [53]. Higher-order corrections to
equation (62) can be obtained iteratively, yet their treatment becomes much more involved.
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It is often expedient to recast the theory in a way which allows one to separate total-
density fluctuations from composition fluctuations. For simplicity, we shall now consider
a mixture which contains only two types of monomer, A and B, of equal size. We
replace the variables(ρA, ρB) by (ρ, φ) with the total densityρ = ρA + ρB, and the
composition variableφ = ρA − ρB. The conjugate fields are given byωρ = (ωA + ωB)/2
andωφ = (ωA − ωB)/2. Furthermore, we adopt the definitions of Laradjiet al [54]:

6 = KAA +KAB +KBA +KBB

11 = KAA +KAB −KBA −KBB

12 = KAA −KAB +KBA −KBB

C = KAA −KAB −KBA +KBB

(63)

and adopt the matrix notation

6δωρ =
∫

dr′ 6(r, r′) δωρ(r′).

Equation (60) can then be rewritten to leading Gaussian order as(
δρ

δφ

)
=
(
6 12

11 C

)(
δωρ
δωφ

)
+ · · · . (64)

Inverting this expression yields(
δωρ
δωφ

)
=
(
6̃−1 1̃−1

1

1̃−1
2 C̃−1

)(
δρ

δφ

)
+ · · · (65)

with

6̃ = 6 −12C
−111

1̃1 = 11− C1−1
2 6

1̃2 = 12−61−1
1 C

C̃ = C −116
−112.

(66)

The free-energy expansion (62) thus takes the form

βF = βFSCF + 1

2
(δρ δφ)

(
6̃−1+ βV (2)ρρ 1̃−1

1 + βV (2)ρφ
1̃−1

2 + βV (2)φρ C̃−1+ βV (2)φφ

)(
δρ

δφ

)
+ · · · (67)

whereV (2)φφ (r, r′) is defined asδ2V/δφ(r) δφ(r′) etc, in analogy to equation (57). Usually,
in the literature [53–55], incompressible melts have been considered (δρ = 0) with an
interaction potential of the form

βVinter =
∫

dr χ(ρAρB)/ρ.

In this case, the free energy can be written as

βF = βFSCF + 1

2
δρ [CRPA]−1 δρ with CRPA =

[
C̃−1− χ

2
1
]−1

. (68)

Equation (67) generalizes this result for arbitrary potentialsV and compressible blends.
In well-segregated macro- or microseparated blends, the main composition fluctuations

are due to capillary-wave fluctuations of interface positions. These are less well captured
by perturbative treatments, since the local concentration deviationsδρα(r) are not small.
As long as the interfaces are still localized, i.e., in periodic structures, the method can
still be applied to some extent [53]. However, the expansion will fail if the fluctuations



Self-consistent-field theories for complex fluids 8123

are strong enough to destroy the long-range order. Note that single, isolated interfaces
between macroscopic phases usually delocalize [85–89], i.e., the extent of the fluctuations
depends on the size of the system. In order to study these long-wavelength fluctuations,
other approaches like effective-interface descriptions with input parameters taken from self-
consistent-field calculations are more appropriate.

In order to illustrate the problem, we shall discuss the simplest example, a single
interface separating two macroscopic phases in a blend of incompatible, but otherwise
symmetric A and B homopolymers. Let us assume that is only slightly distorted from
its lowest-energy flat state, such that the local deviations of the interfacial position can
be described by a single-valued functionh(x, y), and the gradients|∇h| are small. The
increase in interfacial area caused by these fluctuations cost the free energy

HCW = σ

2

∫
dx dy |∇h|2 (69)

where σ is the interfacial tension, and energy losses due to the distortion of profiles
and the like have been neglected. The functional (69) is commonly referred to as the
capillary-wave Hamiltonian. It can be diagonalized by means of a Fourier transformation
in x and y, and since it is quadratic, the spectrum and the distribution functions can
be determined analytically. The thermal average of the Fourier components is given by
〈|h(q)|2〉 = kBT/(σq

2) and one obtains a Gaussian height distribution function [85]

〈δ(z− h(x, y))〉 = Ps2(z) = 1

2πs2
exp

(
− z

2

2s2

)
(70)

with

s2 = 1

4π2

∫
dq 〈|h(q)|2〉 = 1

2πσ
ln

(
qmax

qmin

)
. (71)

Here one has to introduce an upper cut-offqmax and a lower cut-offqmin, since the integral∫
dq/q diverges both atq →∞ andq → 0. The lower cut-off is obviously given by the

system size,qmin = 2π/L. An important consequence is that the widths of the distribution
functionP(h) grows logarithmically with the system sizeL, i.e., the interface is marginally
rough.

The value of the upper cut-off is less obvious. Clearly, the capillary-wave Hamiltonian
(69) cannot be expected to provide a good description of polymer interfaces on all length
scales. Ideally, one would hope that one can find a microscopic length 1/qmax beyond
which (69) is valid, and that the system can be studied independently by other means on
smaller length scales. This implies that the coupling of the long-wavelength capillary-wave
fluctuations with the local structure on short length scales can be neglected. In that case,
an approximation makes sense which describes the interfacial structure in terms of local
‘intrinsic’ profiles, centred at the local interface position,ρα(x, y, z) = ρ(int)α (z− h(x, y))
(the convolution approximation [90]). The intrinsic profile characterizes the system on the
length scale of 1/qmax. When looking at the interface on a larger length scale 1/q0, one
obtains apparent profilesρ(app)α (z), which are broadened by the capillary-wave modes with
wavevectors betweenq0 andqmax:

ρ(app)α (z) =
∫ ∞
−∞

dh ρ(int)α (z− h)Ps ′2(h) with s ′2 = 1

2πσ
ln(qmax/q0). (72)

Note that since

Ps2(z) =
∫ ∞
−∞

dh Ps ′2(z− h)P(s2−s ′2)(h)
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the intrinsic profileρ(int)α (z) can be replaced byρ(app)α (z), and the upper cut-offqmax by
q0, without affecting anything on length scales beyond 1/q0. Thus the choice of the upper
cut-off is largely arbitrary.
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Figure 3. A typical snapshot picture of the local interface positionh(x, y) in Monte Carlo
simulations of a symmetric homopolymer interface atχ = 0.16, N = 32. The coarse-graining
lengthB = 8 is roughly the chain’s gyration radius. The system dimensions areD = 64 and
L = 64. From reference [91].

Werner et al [91] have tested this concept by carrying out extensive Monte Carlo
simulations of interfaces between immiscible phases in symmetric binary polymer blends,
within the bond-fluctuation model (see section 3.1). The simulations were done in a
L × L × D geometry with periodic boundary conditions in theL-directions, and hard
walls in theD-direction, one of which favours the A component while the other favours
the B component. The wall interaction parameters were chosen to be beyond the wetting
transition, and hence large enough to enforce a delocalized AB interface which is on average
located in the middle of the film. In thin films, the capillary-wave fluctuations are limited
by the film thicknessD rather than by the system sizeL. However, if the film thickness
D is chosen large enough compared toL, the interface is essentially free. In order to
study the interfacial fluctuations, the system was split into columns of block sizeB × B
and heightD, and the Gibbs dividing surfaceh(x, y) was determined in each column. A
typical snapshot of the resulting local interface positionh(x, y) is shown in figure 3 for the
block sizeB = 8 lattice constants, which is roughly the radius of gyration (Rg ≈ 7.05).
The monomer profiles were then taken relative to this position, and after averaging over
all columns, the interfacial widthw was determined by fitting the order parameter profile
m(z) = (ρA(z) − ρB(z))/ρ(z) to a tanh profile,m(z) = mb tanh(z/w). Using equation
(72), one can show [91] that the apparent width obtained with this procedure is broadened
according to

w2 = w2
0 +

1

4σ
ln

(
B

B0

)
(73)

due to capillary waves, wherew0 is the intrinsic width andB0 = 2π/qmax is the coarse-
graining length associated with the upper cut-offqmax. Figure 4 shows the simulation results
for the squared interfacial widthw2 as a function of block sizeB in films of lateral size
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Figure 4. The squared interfacial widthw2 as a function of the block sizeB in Monte Carlo
simulations of a homopolymer interface confined in films of various thicknessesD with lateral
dimensionL = 128, atχ = 0.16 andN = 32. The horizontal dotted line marks the self-
consistent-field prediction for a free interfacew2 = 20.5, and the vertical dotted line the value of
the gyration radius of a chainRg = 7.05. The dashed line indicates the theoretically predicted
slope of 1/(4σ) ln(B), with σ = 0.0156 taken from the self-consistent-field theory. From
reference [91].

L = 128, for various film thicknessesD. They become independent ofD for thicknesses
larger thanD > 48, and hence the interface can then be considered to be free. For large
block sizesB, w2 grows logarithmically withB, with a slope which is in rough agreement
with the theoretical prediction 1/(4σ) (dashed line). For very small block sizesB 6 4,
w2 becomes flat. The self-consistent-field valuew2

SCF = 20.9 is reached at the block size
B0 ≈ 7. However, looking just at figure 4, nothing in the shape of the curves indicates that
there should be anything special about the block size 7 or aboutw2 = 20.5. The regime
of logarithmic growth starts at much smaller block sizes. On the other handwSCF can be
made the intrinsic width by decree. With the upper cut-offqmax defined by the corresponding
block sizeB0, the capillary-wave Hamiltonian then provides a reasonable description of the
simulation data. The question remains of which is the correct choice of the cut-offB0. In
our example,B0 happens to be exactly the gyration radius of the chain, but also twice the
statistical segment length of a chain (b = 3.05), or one and a half times the interfacial width.
Each of these is a valid candidate for the cut-off parameter. Semenov [87], for example,
favours the interfacial width. Here again simulations can help to clarify the issue. Recently,
Werneret al have repeated the analysis leading to figure 4 with systematically varied chain
lengthN and/or monomer interaction, i.e.,χ -parameter. At fixedχN = 0.51, they find that
the cut-offB0, defined byw(B0) = wSCF , scales likeB0 ∝

√
N ∝ √1/χ ∝ wSSL ∝ Rg.

At fixed χ = 0.16,B0 first increases strongly withN , but levels off faster thanRg ∝
√
N

at the largest chain lengths(N = 256) [92, 93].
In order to gain a better understanding of this problem, let us go back to the case of

infinitely long chains and recall that self-consistent-field theory is supposed to be exact
in this limit. More specifically, it gives the correct free energy of the system. On the
other hand, the interface has a given, finite surface tension (e.g.,σSSL as obtained in [32]),



8126 F Schmid

and hence the interface position will fluctuate. Concentration fluctuations may exist in the
long-chain limit; they just do not affect the thermodynamics of the system. However, they
influence the local structure, such as local concentration profiles or orientational properties
at interfaces. Self-consistent-field calculations can thus not be expected to give equally
good results on all length scales. When they are used to study local structure properties
in polymer mixtures, one has to ask which is the length scale where the theories describe
the system best. The simulations of Werneret al suggest that it probably approaches a
constant(B0→ (4–5)wSSL) in the strong-segregation limit, but is subject to strong chain-
end corrections. It is worth noting that the cut-offB0 is always much larger than the block
size at whichw(B)2 starts to grow logarithmically as predicted by (73). Up to the length
scale ofB0, the structures obtained with self-consistent-field theories thus average not only
over the bulk composition fluctuations, but also over the capillary-wave fluctuations of the
interface position.

3. Applications

Self-consistent-field theories are finding widespread use in numerous contexts of polymer
and macromolecular physics. For example, they have been employed to calculate
complicated phase diagrams of copolymer blends or mixtures of copolymers and
homopolymers [61, 94], and to study details of density profiles at the internal interfaces
in such materials [35, 86, 95–97]. They are frequently applied in surface physics, e.g., in
connection with surface segregation [98, 69, 72] and wetting phenomena [99], and for the
theoretical study of polymers or copolymers which are adsorbed on surfaces or grafted to
surfaces [40, 100, 101]. We shall not attempt to give an account of all of these activities
here. Rather, we refer the reader to the various recent reviews on the different topics, e.g.,
references [40, 51, 61, 102], and illustrate the use of the method with two examples which
are taken from the present author’s own research: a comparison between self-consistent-
field calculations and Monte Carlo simulations of polymer conformations at interfaces, and a
self-consistent-field study of the phase behaviour of short amphiphilic molecules at surfaces.

3.1. Conformations of polymers at interfaces

We consider an interface between coexisting phases in a symmetric mixture of
homopolymers A and B, in the strong-segregation regime (χN = 17), i.e., at temperatures
well below the demixing temperature. It is studied by means of self-consistent-field theory
within the Gaussian chain model and the wormlike chain model.

The self-consistent-field calculations are compared with simulations of the bond-
fluctuation model. The latter represents polymers by chains of spatially extended effective
monomers, which each occupy a cube of eight neighbouring sites on a cubic lattice, and
which are connected by bonds of length6

√
10 lattice spacings. The two types of monomer

A and B interact pairwise, with interactionsεAA = εBB = −εAB = −kBT ε, if they are less
than
√

6 lattice units apart. The equation of state and the local pair correlations in the bulk
are well known. Moreover, the model was shown to behave like a dense melt at volume
fraction 0.5 or densityρ = 1/16, i.e., the chains have almost ideal Gaussian statistics, with
known statistical segment lengthb ≈ 3 lattice units. The simulations were performed at
chain lengthN = 32 and interaction strengthε = 0.1, which corresponds toχ = 0.53.

Figure 5 shows the results for the interfacial profile ([62] and [92]). All lengths are
given in units ofwSSL = b/

√
6χ , which is the interfacial width in an incompressible mixture

of infinitely long polymers [32], and a ‘natural’ unit of length within the self-consistent-
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Figure 5. The concentration profileρA/ρ
∗ versusz/wSSL (with wSSL = b/

√
6χ ) in self-

consistent-field theory for Gaussian chains (solid line) and wormlike chains of different chain
stiffnessη (dashed lines), atχ = 0.53 and chain lengthN = 32. The results are compared to
simulation data without (open circles) and with (closed circles) block splitting. The thin dashed–
dotted line shows the profile forη = 0.5 with capillary-wave correction, assumings2 = 2.5 (see
equation (72)) (reference [103]). From references [62] and [92].

field theory. In these units, the self-consistent-field theory predicts that the interfacial
thickness decreases with increasing chain stiffnessη. However, the statistical segment
length b = a

√
2η increases in turn, such that the net effect is positive: in absolute units

(e.g., units of the monomer sizea), the interfacial width increases with the chain stiffness
η in this regime of relatively small chain stiffnessη. (Note that Morse and Fredrickson
predict the opposite effect, a decrease of the interfacial width, in the limit of largeη [49].)

We turn to the comparison with the Monte Carlo data. The normalization in units
of wSSL still makes sense, sinceb andwSSL are known, whereas the parameterη is not.
The bare simulation profile is broader by a factor of almost two than the self-consistent-
field prediction (open circles). However, this can basically be traced back to the effect of
capillary waves, as discussed in section 2.4. The simulation profiles obtained after splitting
the system into blocks of sizeB = 8≈ Rg as in reference [91] (where the much more weakly
segregated caseχ = 0.16 was studied) are in good agreement with the self-consistent-field
prediction (closed circles) [62]. Alternatively, one can also correct the self-consistent-field
profile for capillary-wave broadening by means of equation (72) (reference [103]).

Next, the conformations of polymers in the vicinity of such an interface are analysed.
We will examine the conformations of the constituent homopolymers, and those of single
symmetric A:B diblock copolymers (of the same length), which adsorb to the interface. The
results can again be compared with Monte Carlo simulations of very diluted copolymers at
a homopolymer interface [83]. We will limit ourselves to the discussion of the orientational
properties of the molecules here.

It is instructive to study separately the orientations of single bonds, of chain segments,
and of whole chains. In self-consistent-field theory, bond orientations are conveniently
calculated within the wormlike chain model. In the following, we will setη = 1/2. At that
stiffness, the statistical segment lengthb is identical to the ‘monomer length’a, and hence
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adjacent monomers are essentially uncorrelated. This assumption seems reasonable for the
bond-fluctuation model, as long as no bond potentials have been introduced. (An improved
guess forη would probably be a value slightly larger than 1/2, since chains cannot fold
back onto themselves.) Note that chains with such a small stiffness behave almost like
Gaussian chains (cf., e.g., figure 5).
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Figure 6. The orientational order parameterq versusz/wSSL at a homopolymer interface
(χ = 0.53, N = 32) for homopolymer bonds (thick solid line) and for bonds in an adsorbed
diblock copolymer at different positions within the chain: end bonds (dotted line), bonds linking
the two blocks (dashed line), bonds in the middle of a block (long-dashed line). The inset shows
corresponding Monte Carlo data. From references [62] and [83].

In order to study profiles of the bond orientationsb, we define the bond-orientation
parameter

q(r) = 〈b
2
z〉 − 1

2(〈b2
x〉 + 〈b2

y〉)
〈b2〉 (74)

which is negative for orientation parallel to the interface, and positive for perpendicular
orientation. The interfacial profiles ofq are shown in figure 6. Orientation effects on the
bond level are found to be overall very weak. Homopolymer bonds tend to orient parallel
to the interface in the interfacial region. The same holds for most parts of the copolymer;
only very few bonds in the central region connecting the A and B block are perpendicular
to the interface. For both copolymers (dotted line) and homopolymers (not shown), the
orientation is weakest at the chain ends. These results are basically in agreement with the
Monte Carlo data (inset) [83].

Further away from the interface, the orientation of copolymer monomers is driven by
a different effect. The chains are pulled towards the interface by one copolymer end, and
the bonds align perpendicularly as a result. At distances of several radii of gyration, the
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copolymers lose contact with the interface and the orientation parameterq drops back to
zero. The profile ofq for copolymers thus reflects two different length scales—a tendency
of parallel alignment in a region of the extent of the interfacial width, which gives rise to
the central dip in the profiles, and a force towards perpendicular alignment over the length
scale of the gyration radius, which is the range of the interaction between the copolymer
and the interface. Note however that most copolymer monomers are located close to the
centre of the interface, and the net bond orientation is parallel.
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Figure 7. The mean square end-to-end vector component〈R2
i 〉 for i = x, y, z in units of the

average bulk valueb2N/3, versus the distancez of the centre of the end-to-end vector from the
interface in units ofwSSL, for homopolymers (long-dashed line) and single copolymer chains
(dashed line). The parameters areχ = 0.53, N = 32. The points are the corresponding Monte
Carlo data. The thick solid line gives the self-consistent-field prediction with capillary-wave
correction according to equation (72), withs2 = 2.5 taken from figure 5. From reference [83].

Even though interfaces orient single bonds only very weakly, their effect on whole
chains is much stronger. The orientation of whole chains involves two different factors: the
orientation of the gyration tensor at constant total gyration radius or end-to-end radius, and
stretching or compression of the chain in one direction. The first factor cannot be assessed
in a self-consistent-field calculation with Gaussian or nearly Gaussian chains. However, the
simulation data shown in figure 7 [83] indicate that the second effect dominates close to an
interface: the mean squared components parallel to the interfacexy of the end-to-end vectors
hardly vary throughout the system, for both homopolymers and copolymers, whereas they
strongly depend on the distance from the interface for thez-component. Homopolymers are
found to be squeezed towards the interface, which leads to an effective parallel orientation.
Copolymers show the inverse behaviour: they stretch in the direction perpendicular to the
interface. The effect is strongest for copolymers centred between one and two radii of
gyration away from the interface, which are pulled towards the interface by their one end,
and much weaker for copolymers centred right at the interface, which do not feel strong
orienting forces. The latter can be pictured as consisting of two weakly coupled, almost
unperturbed homopolymer blocks A and B. Indeed, the end-to-end vectors of single blocks
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Figure 8. The mean square end-to-end vector component〈R2
i 〉 (i = x, y, z) of the copolymer

blocks in their minority phase (A block in B phase and vice versa) and in their majority phase
(A in A, B in B), in units of the average bulk valueb2N/6, plotted versus the distancez of the
centre of the end-to-end vector from the interface in units ofwSSL, compared to Monte Carlo
data. The parameters areχ = 0.53, N = 32. The thick solid line shows the self-consistent-field
prediction corrected for capillary waves according to equation (72), withs2 = 2.5 taken from
figure 5. From reference [83].

centred at the interface are oriented parallel to the interface, as shown in figure 8.
To conclude, these examples demonstrate that the self-consistent-field theory allows one

to study the conformational properties of polymers at interfaces in great detail, and that a
wealth of information can be obtained from such calculations. The predictions of the theory
were found to be in overall good agreement with Monte Carlo simulations.

3.2. Amphiphiles at surfaces

Our second example deals with a somewhat more exotic application of a self-consistent-field
theory, the study of a coarse-grained model for Langmuir monolayers [65, 105]. These
are monolayers of amphiphilic molecules adsorbed on a water surface. If the nonpolar
chains of the amphiphiles are sufficiently long, one observes experimentally two distinct
coexistence regions of two-dimensional fluid phases on increasing the area per molecule
(reference [106]): a transition from a highly diluted, ‘gas’-like phase (G) into a more
condensed, ‘liquid expanded’ (LE) phase, and a second region at higher surface coverage,
where ‘liquid condensed’ domains are present in a ‘liquid expanded’ environment. The
coexisting high-density phases are true fluid phases, as positional correlations within them
decay exponentially within a few nanometres. In contrast, the directions of the bonds
connecting nearest-neighbour head groups appear to be correlated over tens of micrometres
(reference [107]), which suggests that those phases are probably hexatic. They may be
untilted (LS) or tilted (denoted as L2 here), with different directions of tilt. The transition
between the liquid expanded and the liquid condensed phase is the monolayer equivalent
to the ‘main transition’ in bilayers, where the bilayer thickness jumps discontinuously as
a function of temperature (reference [108]). The latter is probably relevant in biological
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systems, because it is found in lipid membranes at temperatures often close to the body
temperature (e.g., 41.5 ◦C in DPPC).

The problem that we wish to address is the following: what is the origin of the first-order
transition between these two fluid phases? The onset of bond-orientational order cannot
account for the discontinuity, since the transition between a liquid and a hexatic liquid
is of Kosterlitz–Thouless type (reference [109]) and thus continuous. There is substantial
experimental evidence that the flexibility of the polar tails plays a crucial role. In particular,
the liquid expanded phase disappears if the chains are made stiff by replacing the hydrogen
atoms with fluorine atoms (reference [110]). The system is thus a good candidate for a
self-consistent-field treatment, which takes due account of the conformational degrees of
freedom of the chains.
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Figure 9. Profiles of the densityρ in units of 1/(A0l0) versusz in units of l0 for different
molecular areasA/A0. Long- and short-dashed lines show the centre-of-mass densities of the
tail and head segments, respectively. The solid line shows the coarse-grained density, which
accounts for the finite extension of the segments. The parameters areu = 2 andv = 13.7. From
reference [65].

The amphiphiles were modelled as chains containing one head segment, which is
confined to a planar surface by a harmonic potential, and seven tail segments of diameter
A0 and lengthl0. The conformational weight is given by an expression of the type (4) with
an additional bending stiffness contribution exp[uÛ(θ)], which favours parallel alignment
of adjacent segments (θ = 0). The adjustable parameteru determines the stiffness of the
chains, and the actual form of̂U [65] is not of interest here. Chain segments interact via
repulsive hard-core and long-range attractive forces. The self-consistent-field treatment of
the interactions essentially follows the lines of section 2.3, except that in those short chains,
one has to account explicitly for the extended size of the monomers by means of some
appropriate coarse graining over the centre-of-mass densities of segments. Furthermore, the
interactions have an additional anisotropic component, as may result, for example, from
local packing effects. It is included perturbatively by adding an orientation-dependent term

βVani = l0A0

∫
dr du du′ ρ(r,u)ρ(r,u′)v

5

16π
(3(u · u′)2− 1). (75)

The parameterv is again adjustable and describes the anisotropy per segment of the chains.
Within this model, one-dimensional self-consistent-field profiles were calculated in the
directionz perpendicular to the surface, and hence the possibility of lateral order (positional
order) was not taken into account. Figure 9 shows some typical density profiles. Numerous
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other quantities were also evaluated, such as profiles of the nematic tensor, and the in-plane
alignment of segmentsd2

‖ = 〈ux〉2 + 〈uy〉2, which is only nonzero when the symmetry of
the xy-plane is broken. The free energy was evaluated according to equation (8), which
allows one to calculate phase diagrams by means of a Maxwell construction.
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Figure 10. The phase diagram for Langmuir monolayers for stiffer chains (u = 2) in the plane
of anisotropy per segmentv versus area per moleculeA in units of the chain diameterA0. The
shaded area indicates the region of two-phase coexistence. The gas phase is found at much larger
values ofA. Almost the same phase diagram is obtained when varying the stiffness parameter
u at fixed anisotropyv = 13.5. (The critical point is atuc = 1.95 and the triple point is at
ut = 2.05 in arbitrary units.) From reference [65].

One finds that such a model does indeed display coexistence of two untilted fluid
phases. The phase behaviour is driven by the stiffnessu of the chains (reference [105]),
or alternatively by the anisotropic interactionsv [65]. On decreasing the interactions or
increasing the chain flexibility, the condensed phase merges with the expanded phase at a
critical point. On making the chains stiffer or the interactions higher, the expanded phase
becomes unstable. Hence the coexistence region ends in a triple point and a critical point,
like for experimental Langmuir monolayers (figure 10). In addition, one finds a phase with
a uniform tilt in one direction, which is however metastable and buried in the coexistence
region (not shown). Since both the effect of segment interactions and the chain stiffness
decrease with increasing temperature, theu-axis orv-axis can be interpreted as a temperature
axis.

The nature of the phase transition can thus be analysed. The expanded phase is stabilized
by the chain entropy of sufficiently flexible chains. The anisotropic interactions between
segments, which have a stronger effect in systems with stiffer chains, are necessary to bring
about a distinct condensed phase. The phase transition is driven by the interplay of the
entropy of the chains and their tendency towards parallel alignment.

Next, one may ask what happens to the phase diagram (figure 10) if the stiffnessu is
changed substantially. From the previous results, we can infer that the transition values
for v at the critical and triple point are shifted in the opposite direction. In the limit
of very stiff chains, the two transitions merge, and one is left with only one first-order
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Figure 11. The phase diagram for Langmuir monolayers for flexible chains (u = 1.5) in the
plane of anisotropy per segmentv versus area per moleculeA in units of chain diameterA0.
The L2 region corresponds to a phase with broken symmetry in thexy-plane, where the chains
are collectively tilted in one direction. From reference [65].

transition, from the gas phase directly into the untilted condensed phase. This agrees with
the experimental results of reference [110]. If the chains are made more flexible, on the
other hand, the already mentioned tilted phase emerges as an additional stable phase: the
gain of conformational entropy at the corresponding surface densities compensates in part
for the loss of surface energy per chain, and surface coverages are stabilized which support
collective tilt. This is illustrated in figure 11. The liquid expanded phase can then coexist
with either an untilted condensed phase or a tilted condensed phase. At even higher chain
flexibility, the coexisting condensed phase is entirely tilted, and turns into an untilted phase
via a continuous transition upon further compression of the monolayer (not shown). Hence
tilted phases are stabilized by chain flexibility. Note however that other tilting mechanisms
are possible (e.g., resulting from a mismatch between the head size and chain diameter),
which are presumably predominant in real monolayers.

In summary, the self-consistent-field analysis of this model lays open a rich and complex
phenomenology. The different phases at low surface coverage are largely recovered. This
demonstrates again the power of the method even for systems with relatively short chains,
even though, unlike in polymers, the predictions cannot be expected to be quantitative here.

4. Forward look

We have reviewed some recent advances in the self-consistent-field approach, with the aim
of giving a flavour of the potential and the limitations of this method in the study of complex
fluids. Many paths of further development are possible. For example, the combination of
self-consistent-field theories with other more microscopic mean-field approaches, like the
P-RISM theory [75], might open up promising routes for tackling new topical problems
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like polymer crystallization. In general, the investigation of interrelations between different
mean-field approaches contributes to a deepened understanding of the individual methods
(references [111, 112]). Another challenging problem for the future is the formulation of a
general self-consistent-field theory for semidilute self-avoiding chains, which would bridge
between the self-avoiding-chain statistics on small length scales and the random-walk-chain
statistics on larger length scales (reference [57] is a first attempt in this direction). Such
a method would allow one, for example, to study interfaces between hydrophobic and
hydrophilic polymer components in aqueous environments, which are of great interest in
biology.
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Möhwald H 1990Annu. Rev. Phys. Chem.41 441
McConnell H M 1991 Annu. Rev. Phys. Chem.42 171
Knobler C M and Desai R C 1992Annu. Rev. Phys. Chem.43 207
Kaganer V M, M̈ohwald H and Dutta P 1998Rev. Mod. Phys.at press
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